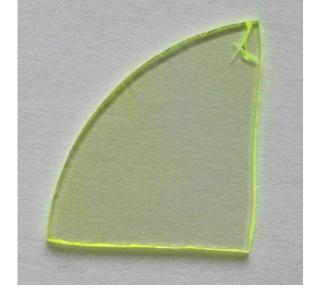


Thin Scintillator Imaging Screens

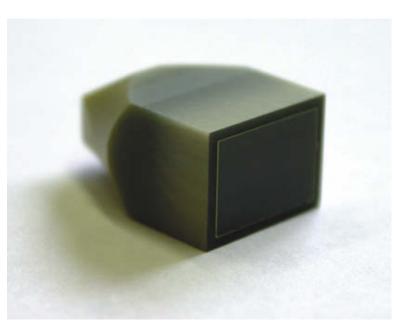
P. Horodysky¹, J. Tous¹, K. Blazek¹, M. Nikl², Yu. Zorenko³, M. Kucera⁴

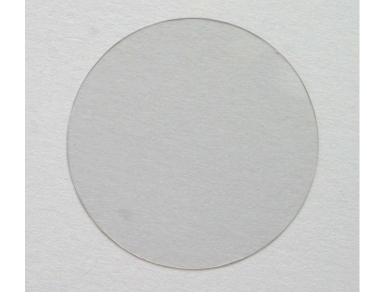
¹Crytur Ltd., Turnov, Czech Republic

²Academy of Sciences of the Czech Republic, Institute of Physics, Prague, Czech Republic ³I. Franko National University, Electronic Department, Lviv, Ukraine ⁴Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic


Scintillation Materials for Imaging Screens

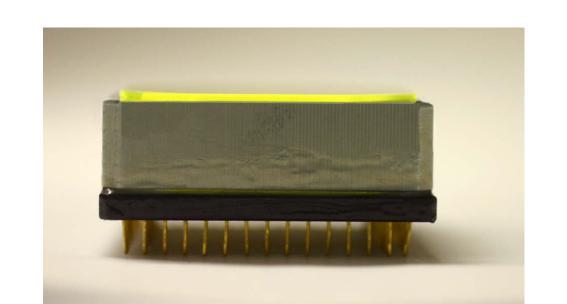
Yttrium aluminum garnet activated by cerium is a fast scintillator with excellent mechanical and chemical resistance. YAG:Ce scintillation detectors are the preferred choice for electron microscopy, beta and X-ray counting, as well as for electron and X-ray imaging screens.


Lutetium aluminum garnet activated by cerium or europium is a scintillator with high absorption to X-ray radiation and excellent mechanical and chemical resistance. LuAG:Ce scintillation detectors are the preferred choice for X-ray radiography imaging screens.


5 m thin YAG:Ce screen

LPE LuAG:Ce sample

Thin YAG:Ce screen on FOP



LPE LuAG:Eu screen

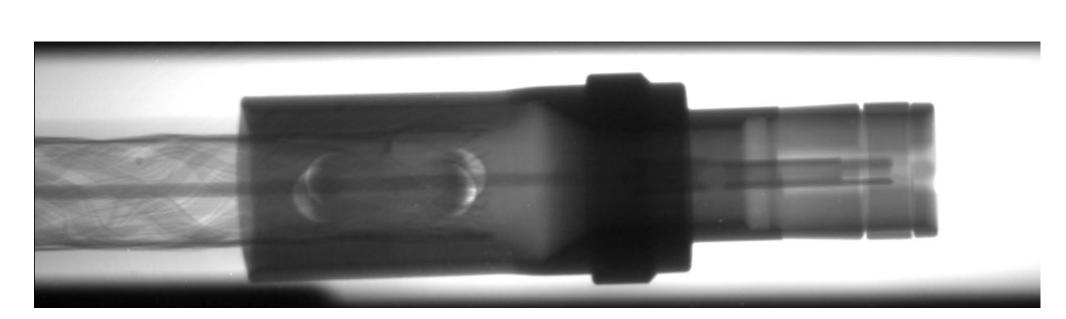
High Spatial Resolution Imaging Systems

High-resolution X-ray imaging digital camera

High-resolution digital camera for TEM

High resolution imaging system is a combination of a high sensitive digital CCD camera and an optical system with a thin scintillator imaging screen. The screen is the YAG:Ce $(Y_3AI_5O_{12})$ or the LuAG:Ce $(Lu_3AI_5O_{12})$ inorganic scintillator. These materials have the advantages in the mechanical and chemical stability, non-hygroscopicity, and a high radiation hardness.

Very thin (down to 5 microns) screens of YAG:Ce were developed for imaging applications requiring high spatial resolution. Crytur also integrated these plates into CCD camera enabling imaging of objects in X-ray and electron beams with high resolution.


High Resolution Application in X-ray Radiography

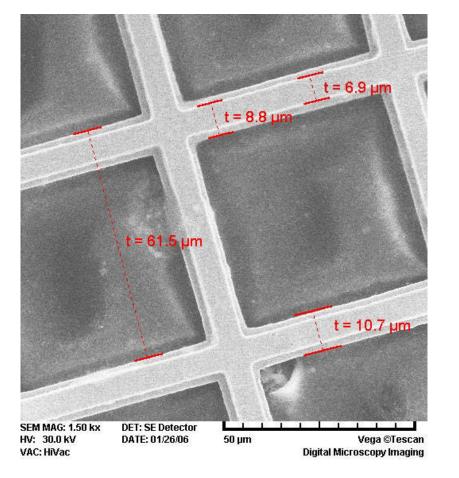
Other applications:

- X-ray spectroscopy
- X-ray topography
- X-ray beam adjustment
- X-ray thin films diffraction
- X-ray optics adjustment
- X-ray microfocus spot measurement
- X-ray imaging in industry
- X-ray food inspection
- ... and many others

 X-ray radiography of a Spider

The images were taken using a microfocus X-ray tube with Cu anode@ 40kV/2mA

X-ray Inspection of fine wires in a data cable


Thin Screens Characterization

Characterization technique/property	Nuclear emitter	SEM/Cathodoluminescence	X-ray/CCD
Repeatability	Very good (1-2%)	Good	Good
Spectral sensitivity	300-600 nm, limited by bialcali cathode of PMT, more sensitive at blue/UV	300-700 nm, limited by bialcali cathode of PMT, more sensitive at blue/UV	Silicon sensitivity, very good, more sensitive at red VIS
Dynamic range	Lower limit is about 20% efficiency of standard single-crystal YAG:Ce	Good, due to large dynamic electron current and PMT voltage	Good, limited by acquisition time
Absorption depth	3 m using ⁶⁷ Ni emitter (max. 67 keV beta)	From 20 nm to 1 m, depending on electron beam acceleration voltage	Full depth of layer
Imaging of homogeneity	No	Limited field of view (3x3 mm²)	Limited by CCD chip size and optical magnification (max. 36x24 mm²)

Grid imaged by Czochralski YAG:Ce thin plate

SEM/CL image of Czochralski grown YAG:Ce and LPE LuAG:Ce

SEM image of the test grid